Pages

Ads 468x60px

terça-feira, 22 de outubro de 2013

Regra de Três Simples Inversa


Dois pedreiros trabalhando juntos conseguem construir um certo muro em 6 horas de trabalho. Se ao invés de dois, fossem três pedreiros, em quantas horas tal muro poderia ser construído?
Você pode facilmente compreender que aumentando o número de pedreiros, o tempo necessário para a construção do muro será menor, pois a mão de obra aumenta, mas a tarefa continua a mesma.
Percebemos então que este problema trata grandezas inversamente proporcionais, ou seja, quando uma grandeza aumenta, a outra diminui e vice-versa.
Vamos chamar de P a grandeza que representa a quantidade de pedreiros e de H a grandeza que representa o número de horas de trabalho para a construção do muro. Vejamos então a representação abaixo:
Expressão Regra de Três Simples Inversa
Neste caso as setas apontam na direção oposta, pois as grandezas são inversamente proporcionais.
Para a resolução do problema, iremos novamente utilizar a "propriedade fundamental das proporções", no entanto para que isto seja possível, devemos primeiro deixar as duas setas com a mesma orientação. Como a seta referente à grandeza H (a grandeza referente ao x) está para cima, iremos inverter os termos da outra razão para que a sua seta também fique para cima:
Expressão com as setas com a mesma orientação
Perceba que sempre que tenhamos que realizar alguma mudança na orientação das setas, a grandeza que contém o termo x é tomada como referência e não é alterada. A outra grandeza, ou outras no caso de se tratar de uma regra de três composta, é que deve mudar.
Então agora podemos montar a proporção segundo a "propriedade fundamental das proporções":
Resolução do exemplo
 Portanto com três pedreiros serão necessárias apenas 4 horas de trabalho.

Nenhum comentário:

Postar um comentário

 

Sample text

Sample Text

Sample Text